45 research outputs found

    Registration accuracy for MR images of the prostate using a subvolume based registration protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, there has been a considerable research effort concerning the integration of magnetic resonance imaging (MRI) into the external radiotherapy workflow motivated by the superior soft tissue contrast as compared to computed tomography. Image registration is a necessary step in many applications, e.g. in patient positioning and therapy response assessment with repeated imaging. In this study, we investigate the dependence between the registration accuracy and the size of the registration volume for a subvolume based rigid registration protocol for MR images of the prostate.</p> <p>Methods</p> <p>Ten patients were imaged four times each over the course of radiotherapy treatment using a T2 weighted sequence. The images were registered to each other using a mean square distance metric and a step gradient optimizer for registration volumes of different sizes. The precision of the registrations was evaluated using the center of mass distance between the manually defined prostates in the registered images. The optimal size of the registration volume was determined by minimizing the standard deviation of these distances.</p> <p>Results</p> <p>We found that prostate position was most uncertain in the anterior-posterior (AP) direction using traditional full volume registration. The improvement in standard deviation of the mean center of mass distance between the prostate volumes using a registration volume optimized to the prostate was 3.9 mm (p < 0.001) in the AP direction. The optimum registration volume size was 0 mm margin added to the prostate gland as outlined in the first image series.</p> <p>Conclusions</p> <p>Repeated MR imaging of the prostate for therapy set-up or therapy assessment will both require high precision tissue registration. With a subvolume based registration the prostate registration uncertainty can be reduced down to the order of 1 mm (1 SD) compared to several millimeters for registration based on the whole pelvis.</p

    Modified Chrispin-Norman chest radiography score for cystic fibrosis: observer agreement and correlation with lung function

    Get PDF
    Contains fulltext : 96114.pdf ( ) (Closed access)OBJECTIVE: To test observer agreement and two strategies for possible improvement (consensus meeting and reference images) for the modified Chrispin-Norman score for children with cystic fibrosis (CF). METHODS: Before and after a consensus meeting and after developing reference images three observers scored sets of 25 chest radiographs from children with CF. Observer agreement was tested for line, ring, mottled and large soft shadows, for overinflation and for the composite modified Chrispin-Norman score. Correlation with lung function was assessed. RESULTS: Before the consensus meeting agreement between observers 1 and 2 was moderate-good, but with observer 3 agreement was poor-fair. Scores correlated significantly with spirometry for observers 1 and 2 (-0.72<R<-0.42, P < 0.05), but not for observer 3. Agreement with observer 3 improved after the consensus meeting. Reference images improved agreement for overinflation and mottled and large shadows and correlation with lung function, but agreement for the modified Chrispin-Norman score did not improve further. CONCLUSION: Consensus meetings and reference images improve among-observer agreement for the modified Chrispin-Norman score, but good agreement was not achieved among all observers for the modified Chrispin-Norman score and for bronchial line and ring shadows

    Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects

    Get PDF
    This overview addresses homocysteine and folate metabolism. Its functions and complexity are described, leading to explanations why disturbed homocysteine and folate metabolism is implicated in many different diseases, including congenital birth defects like congenital heart disease, cleft lip and palate, late pregnancy complications, different kinds of neurodegenerative and psychiatric diseases, osteoporosis and cancer. In addition, the inborn errors leading to hyperhomocysteinemia and homocystinuria are described. These extreme human hyperhomocysteinemia models provide knowledge about which part of the homocysteine and folate pathways are linked to which disease. For example, the very high risk for arterial and venous occlusive disease in patients with severe hyperhomocysteinemia irrespective of the location of the defect in remethylation or transsulphuration indicates that homocysteine itself or one of its “direct” derivatives is considered toxic for the cardiovascular system. Finally, common diseases associated with elevated homocysteine are discussed with the focus on cardiovascular disease and neural tube defects

    Epistasis between COMT and MTHFR in Maternal-Fetal Dyads Increases Risk for Preeclampsia

    Get PDF
    Preeclampsia is a leading cause of perinatal morbidity and mortality. This disorder is thought to be multifactorial in origin, with multiple genes, environmental and social factors, contributing to disease. One proposed mechanism is placental hypoxia-driven imbalances in angiogenic and anti-angiogenic factors, causing endothelial cell dysfunction. Catechol-O-methyltransferase (Comt)-deficient pregnant mice have a preeclampsia phenotype that is reversed by exogenous 2-methoxyestradiol (2-ME), an estrogen metabolite generated by COMT. 2-ME inhibits Hypoxia Inducible Factor 1α, a transcription factor mediating hypoxic responses. COMT has been shown to interact with methylenetetrahydrofolate reductase (MTHFR), which modulates the availability of S-adenosylmethionine (SAM), a COMT cofactor. Variations in MTHFR have been associated with preeclampsia. By accounting for allelic variation in both genes, the role of COMT has been clarified. COMT allelic variation is linked to enzyme activity and four single nucleotide polymorphisms (SNPs) (rs6269, rs4633, rs4680, and rs4818) form haplotypes that characterize COMT activity. We tested for association between COMT haplotypes and the MTHFR 677 C→T polymorphism and preeclampsia risk in 1103 Chilean maternal-fetal dyads. The maternal ACCG COMT haplotype was associated with reduced risk for preeclampsia (P = 0.004), and that risk increased linearly from low to high activity haplotypes (P = 0.003). In fetal samples, we found that the fetal ATCA COMT haplotype and the fetal MTHFR minor “T” allele interact to increase preeclampsia risk (p = 0.022). We found a higher than expected number of patients with preeclampsia with both the fetal risk alleles alone (P = 0.052) and the fetal risk alleles in combination with a maternal balancing allele (P<0.001). This non-random distribution was not observed in controls (P = 0.341 and P = 0.219, respectively). Our findings demonstrate a role for both maternal and fetal COMT in preeclampsia and highlight the importance of including allelic variation in MTHFR

    Modulation of 11β-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation

    Get PDF
    Atherosclerosis is a chronic inflammatory disease in which initial vascular damage leads to extensive macrophage and lymphocyte infiltration. Although acutely glucocorticoids suppress inflammation, chronic glucocorticoid excess worsens atherosclerosis, possibly by exacerbating systemic cardiovascular risk factors. However, glucocorticoid action within the lesion may reduce neointimal proliferation and inflammation. Glucocorticoid levels within cells do not necessarily reflect circulating levels due to pre-receptor metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSDs). 11β-HSD2 converts active glucocorticoids into inert 11-keto forms. 11β-HSD1 catalyses the reverse reaction, regenerating active glucocorticoids. 11β-HSD2-deficiency/ inhibition causes hypertension, whereas deficiency/ inhibition of 11β-HSD1 generates a cardioprotective lipid profile and improves glycemic control. Importantly, 11β-HSD1-deficiency/ inhibition is atheroprotective, whereas 11β-HSD2-deficiency accelerates atherosclerosis. These effects are largely independent of systemic risk factors, reflecting modulation of glucocorticoid action and inflammation within the vasculature. Here, we consider whether evidence linking the 11β-HSDs to vascular inflammation suggests these isozymes are potential therapeutic targets in vascular injury and atherosclerosis

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Methotrexate-induced myelopathy responsive to substitution of multiple folate metabolites

    Full text link
    Methotrexate (MTX)-associated myelopathy is a rare but serious subacute complication of MTX-based chemotherapy. We report the case of a woman with breast cancer and meningeal carcinomatosis who developed severe progressive myelopathy after four cycles of intrathecal MTX administration. We substituted high doses of the key metabolites of the methyl-transfer pathway: S-adenosylmethionine (SAM), 200 mg three times daily i.v.; folinate, 20 mg four times daily i.v.; cyanocobalamin, 100 mug once daily i.v.; and methionine, 5 g daily p.o. The patient's paraparesis improved rapidly thereafter, and magnetic resonance (MR) imaging showed resolution of the intramedullary lesions. Genetic analyses revealed homozygosity for the A allele of methylenetetrahydrofolate reductase (MTHFR) c.1298A>C (p.E429A), whereas other genetic variants of folate/methionine metabolism associated with MTX neurotoxicity were not present. Substitution with multiple folate metabolites may be a promising strategy for the treatment of MTX-induced neurotoxicity
    corecore